Variation of periods modulo p in arithmetic dynamics

نویسنده

  • JOSEPH H. SILVERMAN
چکیده

Let φ : V → V be a self-morphism of a quasiprojective variety defined over a number field K and let P ∈ V (K) be a point with infinite orbit under iteration of φ. For each prime p of good reduction, let mp(φ, P ) be the size of the φ-orbit of the reduction of P modulo p. Fix any ǫ > 0. We show that for almost all primes p in the sense of analytic density, the orbit size mp(φ, P ) is larger than (logNK/Qp) . Introduction Let φ : PQ −→ PQ be a morphism of degree d defined over Q and let P ∈ P(Q) be a point with infinite forward orbit Oφ(P ) = { P, φ(P ), φ(P ), . . . } . For all but finitely many primes p, we can reduce φ to obtain a morphism φ̃p : P N Fp −→ PNFp whose degree is still d. We write mp(φ, P ) for the size of the orbit of the reduced point P̃ = P mod p, mp(φ, P ) = #Oφ̃p(P̃ ). (For the remaining primes we define mp(φ, P ) to be ∞.) Using an elementary height argument (see Corollary 10), one can show that mp(φ, P ) ≥ d log log p+O(1) for all p, but this is a very weak lower bound for the size of the mod p orbits. Our principal results say that for most primes p, we can do (almost) exponentially better. In the following result, we write δ(P) for the Date: February 1, 2008 (Draft 1). 1991 Mathematics Subject Classification. Primary: 11G35; Secondary: 11B37, 14G40, 37F10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On periods modulo p in arithmetic dynamics ∗ †

We prove the following mod p version of a case of the dynamical André-Oort conjecture obtained in [GKN ]. Theorem. There are constants c1, c2 depending on d and h such that the following holds. For almost all P, there is a finite subset T ⊂ F̄P , |T | ≤ c1 such that if t ∈ F̄P \ T at least one of the sets { f (`) t (0) : ` = 1, 2, · · · , [c2 logN ] } , { g (`) t (0) : ` = 1, 2, · · · , [c2 logN ...

متن کامل

Self-similar fractals and arithmetic dynamics

‎The concept of self-similarity on subsets of algebraic varieties‎ ‎is defined by considering algebraic endomorphisms of the variety‎ ‎as `similarity' maps‎. ‎Self-similar fractals are subsets of algebraic varieties‎ ‎which can be written as a finite and disjoint union of‎ ‎`similar' copies‎. ‎Fractals provide a framework in which‎, ‎one can‎ ‎unite some results and conjectures in Diophantine g...

متن کامل

ضرب‌کننده و ضرب‌جمع‌کننده پیمانه 2n+1 برای پردازنده سیگنال دیجیتال

Nowadays, digital signal processors (DSPs) are appropriate choices for real-time image and video processing in embedded multimedia applications not only due to their superior signal processing performance, but also of the high levels of integration and very low-power consumption. Filtering which consists of multiple addition and multiplication operations, is one of the most fundamental operatio...

متن کامل

Arithmetic Cross-correlations of FCSR Sequences

An arithmetic version of the crosscorrelation of two sequences is defined, generalizing Mandelbaum’s arithmetic autocorrelations. Large families of sequences are constructed with ideal (vanishing) arithmetic cross-correlations. These sequences are decimations of the 2-adic expansions of rational numbers p/q such that 2 is a primitive root modulo q.

متن کامل

Faster arithmetic for number-theoretic transforms

We show how to improve the efficiency of the computation of fast Fourier transforms over Fp where p is a word-sized prime. Our main technique is optimisation of the basic arithmetic, in effect decreasing the total number of reductions modulo p, by making use of a redundant representation for integers modulo p. We give performance results showing a significant improvement over Shoup’s NTL library.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008